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ABSTRACT

The rectified flow induced by wind-driven internal seiches in a rotating lake is studied. Friction and
nonlinearity combine to generate a secondary mean flow which is calculated analytically for the case of a \
uniform depth lake and numerically for variable depth.

The theory is applied to Lake Kinneret, the former Sea of Galilee, where the diurnal wind forcing
produces a large internal Kelvin wave and which has a strong cyclonic mean flow. The uniform depth
model reproduces the diurnal response adequately, but variable depth is required to reproduce the mean flow.

1. Introduction and summary

This theory was motivated by Serruya’s (1975)
observation that in summer Lake Kinneret circu-
lates cyclonically. This is commonly observed in
other lakes (Emery and Csanady, 1973) and a
number of mechanisms have been proposed to ex-
plain it. Because Lake Kinneret is small, one would
not expect the simplest mechanism, a wind stress
curl, to be significant. Because it is shallow, it is
not as likely that the spring thermal circulation
would persist long into summer. The presence of
large-amplitude internal Kelvin waves driven by a
predominantly diurpal wind leads us to speculate
that the mean flow is a residual flow due to non-
linearity associated with either the advective terms
or the large fluctuations of the thermocline depth.

One mechanism by which nonlinearity can gener-
ate a mean flow has been advanced by Wunsch
(1973). He found that the Lagrangian mean flow
induced by the first mode internal Kelvin wave is
cyclonic near the surface and bottom, but anti-
cyclonic at mid-depth. The Eulerian mean flow,
however, is assumed zero in his model. As it is
precisely this Eulerian mean flow which is meas-
ured by a fixed current meter, his model cannot
explain Serruya’s observations. The Stokes drift
that he calculated is mostly a kinematic result of
the wave field, but the existence of an Eulerian mean
flow requires a dynamical balance of the second
order. It is this dynamical balance we try to pursue
here. Since the Lagrangian mean is the sum of
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Eulerian mean and Stokes drift (Longuet-Higgins,
1969), Wunsch’s work can be regarded as a comple-
ment to the present work if the Lagrangian mean is
to be calculated.

In a different context, Thompson (1970) studied
the Eulerian mean flow generated by periodic mo-
tions in a rotating cylinder. He found, in the inviscid
interior, that the azimuthal mean flow is indeter-
ministic; itis through the bottom Ekman layer where
friction is important that this degeneracy is removed.

Similarly, for our theory, friction is essential; but
the exact shape of the lake and the exact time and
space variations in the wind are not essential. Thus,
it is sufficient to consider a two-layer circular lake
driven by a uniform wind periodic in time. We will
allow the depth of the lake to be at most a function
of radius and will only use linear bottom and inter-
face friction. The basic equations for this model are
given in Section 2.

In Section 3, before the full model is considered,
a simple analytical example is given to bring out
some of the essentials of the underlying physics with
a minimum of mathematics. This analysis considers
a constant depth, homogeneous ocean bounded on
one side by a straight coast, and driven by a long-
shore wind propagating along the coast. The flow is
assumed to consist of a primary or first-order flow
driven by the wind and obeying the linearized equa-
tions; and a secondary mean flow, averaged in
time or the longshore direction, driven by the non-
linear terms.
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From the vorticity equation, it is shown that the
nonlinear mechanisms which account for the residual
flow can be classified into two categories. One is
associated with correlation between surface eleva-
tion and either the surface or bottom stress, and
will be referred to as the feedback mechanism. The
other is associated with the flux of perturbation
potential vorticity, and hence will be referred to as
the advective mechanism. Friction is essential for
both mechanisms, for without friction many of the
important correlations of primary variables are zero
and the potential vorticity perturbation is zero. It is
shown that the advective process cannot generate
any mean flow at the coast and that the longshore
mean flow must have reversals in direction. The
mean longshore flow at the coast is found to be in
the same direction as a free Kelvin wave propagates.
Its amplitude decreases offshore and has at least
one zero crossing before eventually decaying to
zero. These results have their parallels in the cir-
cular basin case.

In Section 4 the case of a two-layer circular basin
with a flat bottom is also treated by analytical
methods. Although complicated by stratification and
the circular geometry, the basic nonlinear mecha-
nisms are the same. In particular, it is shown that a
mean circulation at the shore can only be generated
by the feedback mechanism, and that the mean
azimuthal flow in the lower layer must have rever-
sals in direction so that the net bottom torque van-
ishes. The signs of the lower layer flow, the vertical
shear and the thermocline displacement at the coast
are determined analytically. It is found that the lower
layer flow is cyclonic near the shore when the forc-
ing frequency is lower than some critical value.
Since a free Kelvin wave has a frequency below this
critical value, we conclude that the lower layer flow
at the coast is generally cyclonic if the Kelvin mode
is the dominant mode that is excited. The sign of
vertical shear at the coast, however, depends on
more parameters and no such simple conclusion
can be drawn for the general case. But for the special
case of a resonant Kelvin mode, this vertical shear
is found to be cyclonic if 8§ (the ratio of bottom fric-
tion coefficient to interface friction coefficient) is
smaller than some critical value §.. Contours of §,
are plotted as a function of dimensionless param-

HSIEN WANG OU AND JOHN R. BENNETT

1113

eters measuring stratification (A) and mean thermo-
cline depth (\). The critical value of A, above which
no cyclonic vertical shear is possible, is found to be
approximately 13 for A = 2, and approaches 12 as
A approaches infinity (i.e., the radius of lake be-
comes much larger than its internal Rossby deforma-
tion radius). The sign of mean thermocline displace-
ment is closely related to the sign of the vertical
shear. It is found that whenever the thermocline
is deeper than half the total depth, there is an anti-
cyclonic vertical shear and an upwelling at coast,
and a cyclonic vertical shear is always accom-
panied by a downwelling at coast.

In Section 5 the theory is applied to Lake Km-
neret (formerly the Sea of Galilee), a lake of rela-
tively simple shape which is driven by a regular
diurnal wind. The primary response predicted by
the theory agrees favorably with the observations.
But, for the secondary mean field, the agreement
is not as satisfactory.

In Section 6 the numerical model of Bennett
(1978), which includes bottom topography, is used to
calculate the mean barotropic flow and thermocline
shape over the whole basin. These calculations show
that the comparison with observation is greatly im-
proved if the lake has a parabolic bottom. The mean
coastal upwelling zone of the constant depth model
is pushed offshore, while an apparent downwelling
takes place right at the coast. This implies a cyclonic
vertical shear and hence better agreement with
observations. In addition, the numerical model is
able to reproduce the intense upwelling zone at the
northwest corner of the lake, and the maximum
mean current in the northwest and southeast
quadrants.

As all the major features of the secondary mean
fields have been reproduced by this model, it is sug-
gested that the mean flow observed is caused by
the nonlinear mechanisms discussed earlier. More
work, however, is needed to understand these
mechanisms in a lake of variable depth.

2. Basic equations

We will use the hydrostatic, Boussinesq and
rigid-lid approximations. Using the notation of Fig.
1, the governing equations are

av F - - 1
TV, + fk x ¥y = —gey - LN 2 VD
ov, o CVy = Vy) — CpV,
+ Vy, VV, + fk X Vo, = —gVn + 2'Vh +
2 2 f 2 g 7) g D _ h (2-1)

oh
—+ V- [AV,]1=0
ot

V-[hV, + (D — h)V,] = 0
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F1G. 1. Definition of variables for a two-layer circular lake model.

The first two are momentum equations for the
upper and lower layers; the last two are continuity
equations. The boundary conditions are that the nor-
mal component of the current is zero at the shore
and that there is no singularity at the center.

F is the wind stress, assumed to be spatially uni-
form, C; and Cy are linear interface and bottom fric-
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tion coefficients, g’ = g(Ap/p,) is the reduced grav-
ity and m is the free surface displacement.
We define the baroclinic and barotropic velocities as

V=V1—V2

1ok

D)V2

For the numerical model of Section 6, these equa-

vty . ( 2.2)
- D

tions are solved in above dimensional form. For the
rest of the analytical theory, the depth D will be
assumed to be constant and the equations will be
nondimensionalized as follows:

r — Rr (R is the radius of the basin),

t—fu,

F*1 -\
\'% ,V — (V ,V - ’
(V1,V3) = (V, V) i
1 F*(1 — A
v,¥) > ( A i
- 1-\ =) fH
“h— H(1 + Ach),
F — F*F,
nRF*(1 — \)
N2,
gH

where
F* wind stress amplitude
A ratio of mean thermocline depth to total depth

[=H/D]
€ a Rossby number [=F*(1 — N)/f?RH)]
A square of the ratio of the basin radius to the

internal Rossby radius of deformation [=R*¥/
g'D\1 — N)].

We will assume that € is small, then the dimension-
less governing equations correct to O(e?) in terms of
baroclinic and barotropic modes are

i')X~i-l:;><V
at
. 12\
= —Vh +F — aqV + azV, — e[v-vy + ViUV + V-VV + ARF — A
1 -2\ A2 A P -
x[“’( ) __ % ]hv— % AhV}A—h—+V-V=—eA[1 2>‘v-hv+v-hV]L-(2.3)
Y (1 — N2 1- ol Y’ 1 - -
av - .
—;+kX_\_7=fV(n—h)+ F — agV,

t 1-2A

_e[l

A

(AhVh
- A

+VV-V + V-VV) + Y-V\_’] ,
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The two friction parameters
a; = C/fD(N — N?),
ag = C/fD,

are assumed to be in the range € <€ o, oy <€ 1. The
dimensionless variables are expanded in a power
series of e:

Rigtar = ho + €h; + O(e?). 2.4

The zero- and first-order variables will henceforth
be referred to as being primary and secondary, re-
spectively. Only the primary solution and the time-
averaged secondary solution will be discussed here.

3. A simple analytical model

Before considering the full problem, it is instruc-
tive to study a simple analytical example to bring out
some of the essentials of the underlying physics with
minimum mathematical complications. As Bennett
(1973, 1978) did, we will consider a homogeneous
ocean of uniform depth bounded on one side by a
straight coast, as shown in Fig. 2. The wind stress
field has only a longshore component and propagates
along the coast.

The governing equations are given by

v, + v'Vv + fk X v + gVh = F/h — Cyv/h, (3.1)
he + V-hv =0, (3.2)

If we multiply (3.1) and (3.2) by & and v, respec-
tively, and add the resultant equations, we obtain

(hv), + V-(vhv) + fk X hv + Vh22
=F — Cgv. (3.3)

Taking the time or y average (denoted by angle
braces) of the y component of this equation yields

Cyp(v)y = —9,(huv), (3.4)

i.e., the longshore mean flow is determined by the
divergence of the Reynolds stress. For coastal
trapped waves, this implies

Lm (v)dx =0,

i

(3.5

i.e., any nontrivial longshore mean flow must have
reversals in direction. This is a trivial result, if we
realize that since the fluctuating wind cannot exert
any net force on the flow, the net bottom stress must
vanish. As this bottom stress is proportional to the
flow, the net longshore flow must therefore vanish.
It is also clear from this argument that (3.5) holds
even for a variable bottom.

By taking the time average of the vorticity equa-
tion, we derive

V(Lv) +fV{v) =k-V X (Fh — Cyv/h), (3.6)

where { = K-V X v is the relative vorticity.
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F1G. 2. Primary Kelvin wave driven by longshore wind stress
field. Solid contours are surface displacement, solid arrows are
velocity and shaded arrows are wind stress. The dashed lines
show the wave field with friction.

To proceed further, we assume that ‘
"h = H(Q + ), (3.7)

where i < 1 and H is the unperturbed depth. Then
(3.2) implies

V-(v) = =V-(qgv). (3.8)
Substituting (3.7) and (3.8) into (3.6), we derive
Cok-V X (v) = =V-(( = fIv)
+ k-V X (Cpmv — 9nF). (3.9)

Since the first term on the right is the divergence of
the flux of potential vorticity, this mechanism will
be referred to as the advective mechanism. The
second term involves correlation between surface
elevation and bottom or surface stress, a mecha-
nism which will be referred to as the feedback
mechanism.

Since there is no flux through the boundary, the
advective mechanism can only act to redistribute
the potential vorticity within the system and cannot
generate any net mean vorticity over the entire
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domain. Indeed, at the coast, the time average of
the y component of (3.1) implies

CB_(") = (Cpmv — nFY), (.10

i.e., the longshore mean flow at the coast can only
be produced by the feedback mechanism. Both these
results [(3.5) and (3.10)] have their parallels in the
circular basin case.

As an example, to calculate the mean flow from
(3.4), we assume that the primary response satisfies
the linear dynamics, that the longshore flow is geo-
strophic, and that the wind stress has only a long-
shore component. By a scaling similar to that of the
previous section, but with a horizontal length scale
set equal to the Rossby radius of deformation, the
nondimensionalized governing equations for the
primary variables are given by

—D':*hxs
ve+u=—h, +F¥— av,
h, +u, +v, =0,

where a = bB/(fH) is a dimensionless frictional
coefficient. The boundary conditions are

u=0 at x =0,

h—-0 as x — oo,

With F? = eitvtot  the solution satisfies

hzr'"qzl/l:o;
2 in2
hx+fl—h=——1q—-F1‘ at x =0,
c o

h—0 as x — o,
where
=
1 -ix
ag
andc = o/l is the ratio of the longshore phase speed
to the free Kelvin wave phase speed. The solution
is given by .
h = Ae %,

' —1/2
-
o

2

o2\ "4 i a
=[1+— exp|-tan* —} , (3.12
(1+5) ew(zen 2] o

@3.11)
where

iq

To a first approximation, (3.4) can be written in a
dimensionless form as

Fv. (3.13)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VoLUME 9

a(v), = —8,(uv),, (3.14)

where the subscripts 0 and 1 indicate that the vari-
ables within the angle braces are primary and
secondary, respectively. At the coast where u = 0,
we then have

av)y = —(u;v)o
= (hhz)o
=15 Re{—~icA* (-
= ~Ya|A|? Im{q}
<. (3.15)

Hence, the mean longshore flow at the coast is
always in the same direction a free Kelvin wave
propagates regardless of the direction the wind pat-
tern propagates. To understand this physically, con-
sider the inviscid primary wave field illustrated by
solid lines in Fig. 2. Without friction the longshore

qA)}

. flow and wind stress are necessarily in quadrature,

so that there is no work done by the wind. With
friction, however, the wave field is shifted as shown
by the dashed lines, so that there is a net correla-
tion between wind and longshore flow to balance the
dissipation. A positive Reynold stress would then
result near shore, and hence a negative longshore
flow would be generated at the coast.

To calculate the magnitude of this mean flow at
coast, we see that if a/o is small, then (3.15) implies

(v), = —Y4|A|? (3.16)

which is proportional to the amplitude squared of the
primary waves. Thus friction is important even when
it is small; given the amplitude of the primary flow,
the mean flow is actually independent of the friction
coefficient. Substituting (3.13) into (3.16), we obtain
another form, giving the mean flow in terms of the
wind stress:

w2
(v), = — L T whenc # 1
40'2(1———)
c
2
z—-l—l-r-;-l—— when ¢ = 1
o

The spatial distribution of { v), can also be calculated
from (3.14), i.e.,

Fv|?
(V)= — } I 2

q

[

2a0 1

g_ ‘(1 ‘2e—m*+q>1 Re{q}

~tmla (1= e |
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Fi1G. 3. Profiles of mean longshore flow (v), for several values of phase speed c.
The amplitudes at the coast have been normalized to unity.

which, in the limit /o, ax/oc <€ 1, can be written
(W) =271 -1 —e™) —e™"
+ B[l - (1 — ¢ Hx]},

where the amplitude has been normalized to unity
at the coast. The profiles of {v), for several values
of ¢ are shown in Fig. 3. The mean longshore flow
at the coast is always in the same direction the free
Kelvin wave propagates, decreasing in amplitude
offshore, with at least one zero crossing somewhere
before eventually decaying to zero.

ov

4. Analytical solution of the case of uniform depth

We now consider the full problem of a two-layer
circular lake with constant depth, driven by a
spatially uniform wind periodic in time. This section
is subdivided into two parts, for the primary and
secondary response, respectively.

a. The primary response

It is seen, from (2.3), that the primary variables
satisfy the O(0) problem:

-~

E-*—l‘\(XV:—Vh-*-F-a,V-f-aBVg
a2t Lvve
4.1
oV . A
= +kXV=-Yn-h)+ F — a3V,
ot - - X
V-v=0 J
From the vorticity equation for the barctropic R
flow, it can easily be shown that F = 2i cosot

V = O(ap).
Thus the primary response is baroclinic and satisfies
vV . ,
%+ka=—Vh+F—aV
! . 4.2)
8h

A= +V-V=0
ot

where a = o; + agh/(1 — A\). Any uniform wind
with frequency o can be decomposed into two rotary
components, i.e.,

Re(f' + ié)[ei(0+al) + ei(e-at)]’

where i, # and @ are unit vectors in the x, r and
@ directions.

The periodic solutions associated with either the
clockwise or counterclockwise component can be
written in the form

h(r.,0,t) = h(r)e*®+o?, 4.3)

where positive (negative) ¢ corresponds to clock-
wise (counterclockwise) component.
The solution of (4.2) is given by
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h = AJ(sr), 4.4)
i=— (a_h+_1_}.l_1__1_)’ (4.5)
a? — 1\ or or o
1 [0k R ’
b= — (—+3h~1—a),(4.6)
o — 1\ or r ,
where
1 L
1+ ——i—
. . g

_dayslfs) L 1]
JI(S)[(I 0)(JI(S) 1)+0}

o= i)

Without friction this would be the solution of Lamb
(1932, §211).

For the nonresonant case, the above solution can
be expanded as

h = AJ,(kr) + iaA {BJl(kr)

g+ 1
_ —kr].(k + O(a?), (4.7
s kel | + O, @)
where
1
1+—
_ g
Jl(k){i’i’i -1+ _].]
J(k) o
_ AJ,(k)[kJO(k) g+ 3c: -0 +1
o+ 1| Ju(k) 20(c? — 1)
2 Ao+ 1)]
o+ 1 2 ’

k = [A(o® — D)2,

»

1 -

(ﬁXV+Vh+a1V—aBV2>1=—
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Since A and B are real, the frictional correction is
purely imaginary. Thus, for small friction there is
only a small phase shift with no amplitude change.
But, exactly at resonance, the solution is

h = —i—CJl(kr) + O(1), (4.8)
o
where
_ —(oc+1) )
T a3 ]
2 a? o

Since A is purely imaginary, there is a 90° phase
shift from the inviscid solution.

Having determined the effect of friction on the pri-
mary response, we now examine the inviscid forced
problem. Fig. 4 shows resonance curves for the first
three inviscid modes with azimuthal wavenumber 1,
as a function of A. The resonance curves are the
solid lines and the thick dashed lines separate the
regions of dominant influence of neighboring modes.
The resonance curves are lines where the amplitude
of thermocline displacement at the coast changes
from + to — in the direction of increasing |o|,
and lines that separate the region of dominant in-
fluence are drawn between resonance curves when-
ever this amplitude goes through zero. The phase
of the forced response for each rotary component
can then be determined by the region of influence
it lies in, and the amplitude depends on its proximity
to the resonance curves. The thin dashed lines are
the nondimensional diurnal and semidiurnal fre-
quencies for Lake Kinneret and the dots on these
lines are based on an estimated A for the lake.

b. The secondary response

Taking the time average of the O(e) equation of
(2.3) and retaining terms to O(ag,q;), we obtain

2: (V-VV)o — ACKF),

' al — 20) o A?
~ (V- V- ~ hV)e, (.
(VWY + V-IV)o + &) ——— (1_)\)2}<V> 4.9)
(V-V), = — A((ll—f%)ﬁ (V-hV)y — A(V-AV),, 4.10)
(kX ¥+ V0 —h) + eV = = ~ i = (AR + (VV-V)g + (V-FV)), 4.11)
(V-V), = 0. “.12)

The vorticity equation for the barotropic component can be derived from (4.11) and (4.12):
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agk-V X (Vy), = — X k-V
X [{(VV-V), + (V-VV)]. (4.13)
Since
(VV-V), = —A(VOh/0t), = A(hAV/dt),

= —A[(hk X V) = (hF)y + a{hV), + V(h2),],
we obtain
KV X (VV-V)y = —AV-(hV),
— Ak V X (h{aV — F)),.
Also, it can easily be derived that
k-V X (V-VV), = V-({V),,

where { is the baroclinic relative vorticity. Thus,
(4.13) implies that

agk -V X (Vy), = [V-((Ah = DV),

I—A

+ AK'V X (ahV — Fh),]. (4.14)

This equation states that there is a balance between
bottom friction, advection of baroclinic potential
vorticity and nonlinear forcing caused by the feed-
back mechanism. )

An equation similar to (3.6) can be derived by
taking the azimuthal mean of the azimuthal com-
ponent of Eq. (4.11); this gives

aB(Uz)xo
A 6 o 1 )
= - |;(vV-V)0 + (V-Vu)y + - {uv), ]
1—-A r
O ——
. * 9 {PuvY, -
1 - Nr? or
Therefore,

r r{vg), dr = 0. (4.15)

0

Because of this, the lower layer mean longshore
flow must have at least one reversal in direction.
Integrating (4.14) over the basin yields .
Al

I =

ap(v2) e = [ahv)e — (hF9)o. (4.16)

The angle brace ( ). implies an average over
0 and ¢ evaluated at the coast. Using this expres-
sion and the primary solution, we can determine
the sign of lower layer flow at the coast.

Substituting (4.6) and (4.7) into (4.16) yields
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({ CLOCKWISE)

{ COUNTER-CLOCKWISE)

F1G. 4. First three inviscid modes (with azimuthal wavenumber
1) of a circular basin. Solid lines are resonance frequencies, and
thick dashed lines separate regions of dominant influence of
neighboring modes. Thin dashed lines represent diurnal and
semidiurnal frequencies for Lake Kinneret, and the dots cor-
respond to an estimate of A.

Al + 8A%) A% 2(k)

(V2)1,e = >
281 =\ o+ 1
8 [kJO(k)[_ 1 (@® + 1) k’o(k)]
S L o1 2t 1) ik

20 +A(0'2+l)]
o+ 1 2 ’

where § is the ratio of bottom friction coefficient
Cp to interface friction coefficient C;.

In Fig. 5, we plot the sign of (v;), . as a function
of o and A. The net flow, which is the sum of the
two rotary components, is cyclonic when the forcing
frequency is lower than the critical frequency shown
by the solid curve. Since the resonant frequency
of the Kelvin mode is lower than this critical fre-
quency, we conclude that the lower layer flow at the
coast is generally cyclonic if the Kelvin mode is the
dominant mode that is excited.

By a similar procedure, we can form the vorticity
equation for the baroclinic mode from (4.9) and
(4.10):
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AN?
(V) =
(I = M1 + 8\
(1l + o)
X ———" (8 - 8.), (4.20
Sl ( ), (4.20)
o where
o + o
3 = [+a (A - —1—) + 1
% 2 o’ o
3
3 . C 1
< 1 (- )\)(1 +_)
b= — —|1- 7
AZ T

o
—

Since I' is negative except for the small A limit where
the frequency of the free Kelvin wave is greater
than f, whenever & < 8., (v),. is positive. In Fig.
6, we plot the value of §, as a function of A and
X. Since 8§, decreases as A increases, there is an
anticyclonic baroclinic mean flow for large enough
A or 8. If we define A, as the value of A where &,
vanishes, then A, is the critical value above which
no cyclonic baroclinic mean flow is possible for any
ANTI -~ CYCLONIC 8. It can be seen that A\, = ¥4 for A = 2, and ap-
proaches the straight coast limit, 0.5, as A ap-

(COUNTER~CLOCKWISE )

-3k . .
proaches infinity.
Also, from (4.9) at resonance,
FiG. 5. The sign of the mean lower layer flow at the coast, (Oh1Or) 1. = (V)10 + 1—2A (12 (4.21)

(s}, as a function of frequency o and A. The solid dots are

estimates for Lake Kinneret.
and from 4.5,

k h)ve = —o(8h/Or)yc = BhIory .. (4.22
ak-V X (V); = V-((Ah — V), (), o P, lo|¢ "y (4.22)

+ Ak'V X (o hV — — hF),, (4.17) 1-0
where { is the barotropic relative velocity. Inte- ' LAKE KINNERET
grating over the basin gives 08| -/

8c<o

ar(D)re = A[a,<hv>c - L (hFoy, ] (4.18)

-\ o
0.6 L
Substituting (4.6), (4.7) into (4.18) yields

)\ ______________________
AA2] 2(k) | kJ (k) 1+ 82 T ° —‘7
1L,e = - 2 — —
tohs 2(0 + 1)[11(k) -2 o4r % A > 0.5

X{kh(k)( o o+l kJo(k)) A= Ae

2 Alg* + 1)
- - . 4.19
pr > ]] 4.19) L — 100
o LA T LR AL B | T T T 1T T TTTT

The sign of this depends not only on o and A, as I. _

does (vy).c, but also on X and 8. Hence, no simple A,

conclusion can be made for the general case. But, FiG. 6. The critical value of 8, the ratio of bottom to interface

for the sPeCl?I case w.h en the resonance .Condltlon frictio.n, .as a function of A, the r;tio of thermocline depth to lake '

for the Kelvin mode is satisfied, we derive, from depth, and A the square of the ratio of the internal radius of
. (4.6), (4.8) and (4.18), that deformation to the lake radius, for a resonant Kelvin wave.



NOVEMBER 1979

From these two equations a definite conclusion
about the sign of (4}, . and (8h/dr), . can be stated
for two conditions:

() IfA=%and (v),.<0,then(h),, (8h/0r),. <O.

@ If x<¥ and (v);,>0, then (k). and
(3h13r),. > 0. :

By referring to Fig. 6, we can then conclude as
follows:

1) For A = 14, the values of (v),., (k). and
{(8h/dr),. are all negative. In other words, when-
ever the mean thermocline is deeper than half the
total depth, there is an anticyclonic baroclinic flow
and an upwelling at the coast.

2) For (v),.> 0, the values of (h),,., and
(dh/dr), . are both positive. Thus, a cyclonic baro-
clinic flow is always accompanied by a downwelling
at the coast.

The existence of this critical value of A can be
understood by examining (4.18) more closely. The
sign of (v), . depends on the net effect of the feed-
back mechanisms associated with thermocline stress
and surface stress, respectively. For a resonant
Kelvin wave, the one associated with the thermo-
cline stress always tends to induce a positive value
since the longshore flow is essentially geostrophic
and the amplitude of thermocline displacement
decreases monotonically away from shore. In con-
trast, the one associated with the surface stress
always tends to induce a negative value due to the
positive correlation between v and F? required to
maximize the energy input at resonance. The latter,
being dependent on «/(1 — A), would dominate the
response as & or \ increases. Therefore, we even-
tually would get an anticyclonic baroclinic flow at
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the coast when & or A is large enough. Since &,
slopes steeply except near A, the direction of (v),,
is not very sensitive to the variation of & except
when A is close to A..

In summary, we conclude that the lower layer
flow is cyclonic near the coast when the forcing
frequency is lower than some critical value. For
the special case of a resonant Kelvin mode, it was
found that if 8 (the ratio of bottom friction coefficient
to interface friction coefficient) is smaller than some
critical value §,, there is a cyclonic vertical shear.
The critical curve of A (the ratio of thermocline
depth to total depth), above which no cyclonic verti-
cal shear is possible, was also determined. It has

“the value of approximately ¥5 for A of 2, and ap-

proaches %2 as A approaches infinity. Most of these
conclusions are strictly valid only for a resonant
internal Kelvin wave; although internal Kelvin
waves are observed in many lakes, the resonance
condition is best satisfied by Lake Kinneret.

5. Application to Lake Kinneret

All observations in this section are from Serruya
(1975); but anyone interested in a more general
description of the meteorology, hydrology and
limnology of Lake Kinneret should read Serruya’s
(1978) book. Lake Kinneret (Fig. 7) is located be-
tween 32°45’' and 32°55'N latitude; the inertial
period is approximately 22 h. C, I, F and K are four
mooring stations roughly equally spaced around the
basin, and BB is a weather station. Fig. 8 shows
the hourly wind averaged over the period 15-31
July 1971. There is a daily westerly that reaches its
peak at about 1500 local time. Fig. 9 shows the wind
and temperature data at the four stations K, C, I,

F1G. 7. Lake Kinneret and a model of Lake Kinneret. The depth contours are in meters.
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FiG. 8. Hourly winds averaged over 15-31 July 1971, the approximate stress, and its Fourier decomposition.

F during the period 14-20 July 1973. By graph-
ical averaging, we estimated the diurnal and semi-
diurnal responses also shown in Fig. 9. The diurnal
response is clearly a counterclockwise propagating
wave; the semidiurnal response is more difficult
to interpret, but it looks like a standing mode, with
a nodal line in the north-south direction.

" Fig. 10 shows progressive vector diagrams and
the time average for currents at 3.5 and 21 m at the
four stations during 1-5 June 1973. At both levels
the flow is cyclonic but the speed is much higher
near the surface.

Fig. 11 shows the depth of the thermocline ob-
tained by Serruya from synoptic cruises of several
times over a 3-day period. From this we can see
that the patterns are roughly periodic with the maxi-
mum downwelling occurring in early morning in the
northeast corner. The northwest corner, however,

is clearly a region of upwelling at nearly all times.
" Can the observations be explained by the model?
To test this, we consider the circular model lake of
Fig. 7. The radius is 7 km, the mean depth is 26 m,
and the thermocline, roughly the 21°C isotherm, has
a mean depth of 20 m. The wind, approximated by
the half-cosine shape of Fig. 8, is composed of ap-
proximately 30% mean, 50% diurnal component and

20% semi-diurnal component. The density differ-
ence between the upper and lower layer is approxi-
mately 2 X 10~ g cm~3. This gives a reduced grav-
ity of 1.96 cm s2 and a A of 3.75. The ratio of the
diurnal frequency to the inertial frequency is
~0.922. These parameter values are represented
by solid dots in-Figs. 4-6. Due to the high phase
uncertainty of the semi-diurnal component and its
relative minor contribution to the secondary re-
sponse, we will only discuss the diurnal component.

From the frictionless theory of Fig. 4 we expect
the primary response to propagate counterclock-
wise and the upwelling to occur at the downwind
shore —opposite what one would expect for steady
flow. For this wave, which looks essentially like a
resonant Kelvin wave, friction causes a phase shift
which tends to make the upwelling occur at the shore
to the left of the wind so that the longshore surface
current is in phase with the wind, and the energy
input is thus maximized. Thus, at the time of the
peak westerly wind, 1500 LT, the upwelling should
be maximum near the north shore. This is in agree-
ment with the temperature observations of Fig. 9;
at the time of the maximum wind speed the coldest
water occurs between stations I and F.

According to Fig. 5, this diurnal component
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F1G. 9. Serruya’s (1975) wind and temperature data, and its graphical decomposition into diurnal
and semidiurnal components.

should generate a cyclonic lower layer flow at the
coast. This agrees with the observations. The theory
also predicts an anticyclonic mean drift somewhere
in the interior region so that the net torque is zero.
No observation is available to check this prediction.

We computed the baroclinic mean flow and
thermocline slope for the parameters of Lake
Kinneret. Because the dominant primary response
is the Kelvin wave, they do not differ substantially
from what one can conclude from Fig. 6 which as-

sumes that the resonance condition for the Kelvin
wave is satisfied. The value A = 0.8 for this model
lake is well above the critical curve of A,; we
therefore expect an anticyclonic mean baroclinic
flow and upwelling at the coast. This latter predic-
tion, combined with the set up due to the mean wind
component, may explain the relatively intense mean
upwelling in the northwest corner of the lake shown
in Fig. 11. The prediction of a mean anticyclonic
baroclinic flow at the coast, however, disagrees with
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F1G. 10. Serruya’s progressive vector diagrams and mean currents during 1-5 June 1973. Note that for the near-surface measure-
ments on the left, the scales are different from the deeper measurements on the right; the surface currents are faster than the

deeper currents.

the observations in Fig. 10. In Section 6 we show
that adding topography improves this aspect of the
theory.

6. Numerical calculations

As in the analytical theory, the primary response
is assumed to be governed by the linear equations

22.6.70

22.6.70 24.6.70

15 00

21%-23 21 21%%.23%°

FIG. 11. Serruya’s maps of thermocline depth (m) measured
twice a day, 22-24 June 1976.

and the secondary response is driven by the non-
linear interactions of the primary variables. All
the variables are expressed as

h(r,0,t) = hy(r,t) + hy(r,t) sin@ + hy(r,t) cosf

+ hy(r,t) sin20 + hy(r,t) cos26. (6.1)

The numerical model of Bennett (1978) was used
to calculate the solutions presented here. Because
the wind is uniform, the primary response is the

 sinf and cosf components, and the secondary

response is the mean and the sin26 and cos26 com-
ponents. The model was run with a periodic wind
until a statistically steady state is reached, then
averaged over one wave period to obtain the mean
secondary response. The thermocline friction coef-
ficient ¢ is 0.005 cm s™! and the bottom friction
coefficient d is 0.02 cm s~

At the top of Fig. 12 is the mean thermocline
displacement” and streamfunction induced by the
diurnal wind for a uniform depth of 26 m and a mean
thermocline depth of 20 m. As predicted by the
analytical theory there is'a mean upwelling of the
thermocline at the coast and a cyclonic circulation.
The higher harmonic structure is caused by correla-
tion of the two oppositely propagating primary
waves. At the bottom of Fig. 12 is the solution for
a parabolic bottom with a minimum depth at the
shore of 20 m, a mean thermocline depth of 15 m
and a maximum depth of 50 m. Notice that the
coastal upwelling zone of the flat bottom lake is
pushed offshore while an apparent downwelling is
induced at the coast. This downwelling implies a
cyclonic vertical shear. This result agrees with the
observations better than the constant depth case
because the observed flow is much stronger above
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F1G. 12. Thermocline displacement (cm), negative values implying upwelling, and
transport streamfunction (10 cm?® s™!) numerically calculated for a model of Lake Kinneret.
At the top is the solution for a constant depth; at the bottom is the solution for a parabolic

bottom.

the thermocline. The magnitude of the flow is also
more reasonable—the maximum upper layer cur-
rent in this model is ~8 cm s™!. Finally, the maxi-
mum current speed occur in approximately the cor-
rect spots, the northwest and southeast corners.

It is reasonable that this large variation of depth
can cause such a radically different solution, but
the reason for it is not clear. Bennett (1978) found,
for Lake Ontario, that rectification of topographic
waves was important. However, this cannot be the
case here because the topographic waves for this
model have periods of about a week and are not
resonantly excited by the diurnal wind. It seems
more likely that the depth variation influences the
solution in causing friction to be more effective
in the shallow nearshore region than offshore. It
would clearly be worthwhile to extend the analyti-
cal theory to a case of variable depth.
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